

Contents

	Grimp
	Quick start

	External packages

	Multiple packages

	Installation

	Usage
	Terminology

	Building the graph

	Methods for analysing the module tree

	Methods for analysing direct imports

	Methods for analysing import chains

	Methods for manipulating the graph

	Contributing
	Bug reports

	Documentation improvements

	Feature requests and feedback

	Development

	Authors

	Changelog
	0.0.1 (2018-11-05)

	1.0b1 (2018-12-08)

	1.0b2 (2018-12-12)

	1.0b3 (2018-12-16)

	1.0b4 (2019-1-7)

	1.0b5 (2019-1-12)

	1.0b6 (2019-1-20)

	1.0b7 (2019-1-21)

	1.0b8 (2019-2-1)

	1.0b9 (2019-4-16)

	1.0b10 (2019-5-15)

	1.0b11 (2019-5-18)

	1.0b12 (2019-6-12)

	1.0b13 (2019-9-25)

	1.0 (2019-10-17)

	1.1 (2019-11-18)

Indices and tables

	Index

	Module Index

	Search Page

Grimp

[image: _images/grimp.svg]
 [https://pypi.org/project/grimp][image: Python versions]
 [https://pypi.org/project/grimp/][image: _images/grimp2.svg]
 [https://travis-ci.com/seddonym/grimp]Builds a queryable graph of the imports within one or more Python packages.

	Free software: BSD license

Quick start

Install grimp:

pip install grimp

Install the Python package you wish to analyse:

pip install somepackage

In Python, build the import graph for the package:

>>> import grimp
>>> graph = grimp.build_graph('somepackage')

You may now use the graph object to analyse the package. Some examples:

>>> graph.find_children('somepackage.foo')
{
 'somepackage.foo.one',
 'somepackage.foo.two',
}

>>> graph.find_descendants('somepackage.foo')
{
 'somepackage.foo.one',
 'somepackage.foo.two',
 'somepackage.foo.two.blue',
 'somepackage.foo.two.green',
}

>>> graph.find_modules_directly_imported_by('somepackage.foo')
{
 'somepackage.bar.one',
}

>>> graph.find_upstream_modules('somepackage.foo')
{
 'somepackage.bar.one',
 'somepackage.baz',
 'somepackage.foobar',
}

>>> graph.find_shortest_chain(importer='somepackage.foobar', imported='somepackage.foo')
(
 'somepackage.foobar',
 'somepackage.baz',
 'somepackage.foo',
)

>>> graph.get_import_details(importer='somepackage.foobar', imported='somepackage.baz'))
[
 {
 'importer': 'somepackage.foobar',
 'imported': 'somepackage.baz',
 'line_number': 5,
 'line_contents': 'from . import baz',
 },
]

External packages

By default, external dependencies will not be included. This can be overridden like so:

>>> graph = grimp.build_graph('somepackage', include_external_packages=True)
>>> graph.find_modules_directly_imported_by('somepackage.foo')
{
 'somepackage.bar.one',
 'os',
 'decimal',
 'sqlalchemy',
}

Multiple packages

You may analyse multiple root packages. To do this, pass each package name as a positional argument:

>>> graph = grimp.build_graph('somepackage', 'anotherpackage')
>>> graph.find_modules_directly_imported_by('somepackage.foo')
{
 'somepackage.bar.one',
 'anotherpackage.baz',
}

For the full list of methods, see Usage.

Installation

At the command line:

pip install grimp

Usage

Grimp provides an API in the form of an ImportGraph that represents all the imports within one or more
top-level Python packages. This object has various methods that make it easy to find out information about
the packages’ structures and interdependencies.

Terminology

The terminology around Python packages and modules can be a little confusing. Here are the definitions we use,
taken in part from the official Python docs [https://docs.python.org/3/tutorial/modules.html]:

	Module: A file containing Python definitions and statements. This includes ordinary .py files and
__init__.py files.

	Package: A special kind of module that namespaces other modules using dotted module names. For example, the module
name A.B designates a submodule named B in a package named A. Packages take the form of __init__.py
files in a container directory. Packages may contain other packages. A package is also a module.

	Top Level Package: A package in the root namespace - in other words, one that is not a subpackage. For example,
A is a top level package, but A.B is not.

	Graph: A graph in the mathematical sense [https://en.wikipedia.org/wiki/Graph_(discrete_mathematics)] of a collection of items with relationships between them. Grimp’s
ImportGraph is a directed graph of imports between modules.

	Direct Import: An import from one module to another.

	Import Chain: A chain of direct imports between two modules, possibly via other modules. For example, if
mypackage.foo imports mypackage.bar, which in turn imports mypackage.baz, then there is an import chain
between mypackage.foo and mypackage.baz.

	Squashed Module: A module in the graph that represents both itself and all its descendants. Squashed
modules allow parts of the graph to be simplified. For example, if you include external packages when building
the graph, each external package will exist in the graph as a single squashed module.

Building the graph

import grimp

Single package
graph = grimp.build_graph('mypackage')

Multiple packages
graph = grimp.build_graph('mypackage', 'anotherpackage', 'onemore')

Include imports of external packages
graph = grimp.build_graph('mypackage', include_external_packages=True)

	
grimp.build_graph(package_name, *additional_package_names, include_external_packages=False)

	Build and return an ImportGraph for the supplied package or packages.

	Parameters

	
	package_name (str) – The name of the top level package, for example 'mypackage'.

	additional_package_names (tuple(str)) – Tuple of any additional top level package names. These can be
supplied as positional arguments, as in the example above.

	include_external_packages (bool) – Whether to include external packages in the import graph. If this is True,
any other top level packages that are imported by this top level package (including packages in the
standard library) will be included in the graph as squashed modules (see Terminology above). Note: external
packages are only analysed as modules that are imported; any imports they make themselves will not
be included in the graph.

	Returns

	An import graph that you can use to analyse the package.

	Return type

	ImportGraph

Methods for analysing the module tree

	
ImportGraph.modules

	All the modules contained in the graph.

	return

	Set of module names.

	rtype

	A set of strings.

	
ImportGraph.find_children(module)

	Return all the immediate children of the module, i.e. the modules that have a dotted module name that is one
level below.

	param str module

	The importable name of a module in the graph, e.g. 'mypackage' or
'mypackage.foo.one'. This may be any non-squashed module. It doesn’t need to be a package itself,
though if it isn’t, it will have no children.

	return

	Set of module names.

	rtype

	A set of strings.

	raises

	ValueError if the module is a squashed module, as by definition it represents both itself and all
of its descendants.

	
ImportGraph.find_descendants(module)

	Return all the descendants of the module, i.e. the modules that have a dotted module name that is below
the supplied module, to any depth.

	param str module

	The importable name of the module, e.g. 'mypackage' or 'mypackage.foo.one'. As with
find_children, this doesn’t have to be a package, though if it isn’t then the set will be empty.

	return

	Set of module names.

	rtype

	A set of strings.

	raises

	ValueError if the module is a squashed module, as by definition it represents both itself and all
of its descendants.

Methods for analysing direct imports

	
ImportGraph.direct_import_exists(importer, imported, as_packages=False)

	
	Parameters

	
	importer (str) – A module name.

	imported (str) – A module name.

	as_packages (bool) – Whether or not to treat the supplied modules as individual modules, or as entire
packages (including any descendants).

	Returns

	Whether or not the importer directly imports the imported module.

	Return type

	True or False.

	
ImportGraph.find_modules_directly_imported_by(module)

	
	Parameters

	module (str) – A module name.

	Returns

	Set of all modules in the graph are imported by the supplied module.

	Return type

	A set of strings.

	
ImportGraph.find_modules_that_directly_import(module)

	
	Parameters

	module (str) – A module name.

	Returns

	Set of all modules in the graph that directly import the supplied module.

	Return type

	A set of strings.

	
ImportGraph.get_import_details(importer, imported)

	Provides a way of seeing any available metadata about direct imports between two modules. Usually
the list will consist of a single dictionary, but it is possible for a module to import another
module more than once.

This method should not be used to determine whether an import is present:
some of the imports in the graph may have no available metadata. For example, if an import
has been added by the add_import method without the line_number and line_contents specified, then
calling this method on the import will return an empty list. If you want to know whether the import is present,
use direct_import_exists.

The details returned are in the following form:

[
 {
 'importer': 'mypackage.importer',
 'imported': 'mypackage.imported',
 'line_number': 5,
 'line_contents': 'from mypackage import imported',
 },
 # (additional imports here)
]

If no such import exists, or if there are no available details, an empty list will be returned.

	Parameters

	
	importer (str) – A module name.

	imported (str) – A module name.

	Returns

	A list of any available metadata for imports between two modules.

	Return type

	List of dictionaries.

	
ImportGraph.count_imports()

	
	Returns

	The number of direct imports in the graph.

	Return type

	Integer.

Methods for analysing import chains

	
ImportGraph.find_downstream_modules(module, as_package=False)

	
	Parameters

	
	module (str) – A module name.

	as_package (bool) – Whether or not to treat the supplied module as an individual module,
or as an entire package (including any descendants). If
treating it as a package, the result will include downstream
modules external to the supplied module, and won’t include modules within it.

	Returns

	All the modules that import (even indirectly) the supplied module.

	Return type

	A set of strings.

Examples:

Returns the modules downstream of mypackage.foo.
import_graph.find_downstream_modules('mypackage.foo')

Returns the modules downstream of mypackage.foo, mypackage.foo.one and
mypackage.foo.two.
import_graph.find_downstream_modules('mypackage.foo', as_package=True)

	
ImportGraph.find_upstream_modules(module, as_package=False)

	
	Parameters

	
	module (str) – A module name.

	as_package (bool) – Whether or not to treat the supplied module as an individual module,
or as a package (i.e. including any descendants, if there are any). If
treating it as a subpackage, the result will include upstream
modules external to the package, and won’t include modules within it.

	Returns

	All the modules that are imported (even indirectly) by the supplied module.

	Return type

	A set of strings.

	
ImportGraph.find_shortest_chain(importer, imported)

	
	Parameters

	
	importer (str) – The module at the start of a potential chain of imports between importer and imported
(i.e. the module that potentially imports imported, even indirectly).

	imported (str) – The module at the end of the potential chain of imports.

	Returns

	The shortest chain of imports between the supplied modules, or None if no chain exists.

	Return type

	A tuple of strings, ordered from importer to imported modules, or None.

	
ImportGraph.find_shortest_chains(importer, imported)

	
	Parameters

	
	importer (str) – A module or subpackage within the graph.

	imported (str) – Another module or subpackage within the graph.

	Returns

	The shortest import chains that exist between the importer and imported, and between any modules
contained within them. Only one chain per upstream/downstream pair will be included. Any chains that are
contained within other chains in the result set will be excluded.

	Return type

	A set of tuples of strings. Each tuple is ordered from importer to imported modules.

	
ImportGraph.find_all_simple_chains(importer, imported)

	
	Parameters

	
	importer (str) – A module or subpackage within the graph.

	imported (str) – Another module or subpackage within the graph.

	Returns

	All simple chains between the importer and the imported modules (a simple chain is one with no
repeated modules).

If either module is not present in the graph, grimp.exceptions.ModuleNotPresent
will be raised.

	Return type

	A generator of tuples of strings. Each tuple is ordered from importer to imported modules.

	
ImportGraph.chain_exists(importer, imported, as_packages=False)

	
	Parameters

	
	importer (str) – The module at the start of the potential chain of imports (as in find_shortest_chain).

	imported (str) – The module at the end of the potential chain of imports (as in find_shortest_chain).

	as_packages (bool) – Whether to treat the supplied modules as individual modules,
or as packages (including any descendants, if there are any). If
treating them as packages, all descendants of importer and
imported will be checked too.

	Returns

	Return whether any chain of imports exists between importer and imported,
even indirectly; in other words, does importer depend on imported?

	Return type

	bool

Methods for manipulating the graph

	
ImportGraph.add_module(module, is_squashed=False)

	Add a module to the graph.

	Parameters

	
	module (str) – The name of a module, for example 'mypackage.foo'.

	is_squashed (bool) – If True, the module should be treated as a ‘squashed module’ (see Terminology above).

	Returns

	None

	
ImportGraph.remove_module(module)

	Remove a module from the graph.

If the module is not present in the graph, no exception will be raised.

	Parameters

	module (str) – The name of a module, for example 'mypackage.foo'.

	Returns

	None

	
ImportGraph.add_import(importer, imported, line_number=None, line_contents=None)

	Add a direct import between two modules to the graph. If the modules are not already
present, they will be added to the graph.

	Parameters

	
	importer (str) – The name of the module that is importing the other module.

	imported (str) – The name of the module being imported.

	line_number (int) – The line number of the import statement in the module.

	line_contents (str) – The line that contains the import statement.

	Returns

	None

	
ImportGraph.remove_import(importer, imported)

	Remove a direct import between two modules. Does not remove the modules themselves.

	Parameters

	
	importer (str) – The name of the module that is importing the other module.

	imported (str) – The name of the module being imported.

	Returns

	None

	
ImportGraph.squash_module(module)

	‘Squash’ a module in the graph (see Terminology above).

Squashing a pre-existing module will cause all imports to and from the descendants of that module to instead
point directly at the module being squashed. The import details (i.e. line numbers and contents) will be lost
for those imports. The descendants will then be removed from the graph.

	Parameters

	module (str) – The name of a module, for example 'mypackage.foo'.

	Returns

	None

	
ImportGraph.is_module_squashed(module)

	Return whether a module present in the graph is ‘squashed’ (see Terminology above).

	Parameters

	module (str) – The name of a module, for example 'mypackage.foo'.

	Returns

	bool

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

Bug reports

When reporting a bug [https://github.com/seddonym/grimp/issues] please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Documentation improvements

Nameless could always use more documentation, whether as part of the
official Nameless docs, in docstrings, or even on the web in blog posts,
articles, and such.

Feature requests and feedback

The best way to send feedback is to file an issue at https://github.com/seddonym/grimp/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that code contributions are welcome :)

Development

To set up grimp for local development:

	Fork grimp [https://github.com/seddonym/grimp]
(look for the “Fork” button).

	Clone your fork locally:

git clone git@github.com:your_name_here/grimp.git

	Create a branch for local development:

git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, run all the checks, doc builder and spell checker with tox [https://tox.readthedocs.io/en/latest/install.html] one command:

tox

	Commit your changes and push your branch to GitHub:

git add .
git commit -m "Your detailed description of your changes."
git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

If you need some code review or feedback while you’re developing the code just make the pull request.

For merging, you should:

	Include passing tests (run tox) 1.

	Update documentation when there’s new API, functionality etc.

	Add a note to CHANGELOG.rst about the changes.

	Add yourself to AUTHORS.rst.

	1

	If you don’t have all the necessary python versions available locally you can rely on Travis - it will
run the tests [https://travis-ci.org/seddonym/grimp/pull_requests] for each change you add in the pull request.

It will be slower though …

Tips

To run a subset of tests:

tox -e envname -- pytest -k test_myfeature

To run all the test environments in parallel (you need to pip install detox):

detox

Authors

	David Seddon - https://seddonym.me

Changelog

0.0.1 (2018-11-05)

	Release blank project on PyPI.

1.0b1 (2018-12-08)

	Implement core functionality.

1.0b2 (2018-12-12)

	Fix PyPI readme rendering.

1.0b3 (2018-12-16)

	Fix bug with analysing relative imports from within __init__.py files.

	Stop skipping analysing packages called migrations.

	Deal with invalid imports by warning instead of raising an exception.

	Rename NetworkXBackedImportGraph to ImportGraph.

1.0b4 (2019-1-7)

	Improve repr of ImportGraph.

	Fix bug with find_shortest_path using upstream/downstream the wrong way around.

1.0b5 (2019-1-12)

	Rename get_shortest_path to get_shortest_chain.

	Rename path_exists to chain_exists.

	Rename and reorder the kwargs for get_shortest_chain and chain_exists.

	Raise ValueError if modules with shared descendants are passed to chain_exists if as_packages=True.

1.0b6 (2019-1-20)

	Support building the graph with external packages.

1.0b7 (2019-1-21)

	Add count_imports method.

1.0b8 (2019-2-1)

	Add as_packages parameter to direct_import_exists.

1.0b9 (2019-4-16)

	Fix bug with calling importlib.util.find_spec.

1.0b10 (2019-5-15)

	Fix Windows incompatibility.

1.0b11 (2019-5-18)

	Add remove_module method.

1.0b12 (2019-6-12)

	Add find_shortest_chains method.

1.0b13 (2019-9-25)

	Support multiple root packages.

1.0 (2019-10-17)

	Officially support Python 3.8.

1.1 (2019-11-18)

	Clarify behaviour of get_import_details.

	Add module_is_squashed method.

	Add squash_module method.

	Add find_all_simple_chains method.

Index

 G
 | I
 | M

G

 	
 	grimp.build_graph() (built-in function)

I

 	
 	ImportGraph.add_import() (built-in function)

 	ImportGraph.add_module() (built-in function)

 	ImportGraph.chain_exists() (built-in function)

 	ImportGraph.count_imports() (built-in function)

 	ImportGraph.direct_import_exists() (built-in function)

 	ImportGraph.find_all_simple_chains() (built-in function)

 	ImportGraph.find_children() (built-in function)

 	ImportGraph.find_descendants() (built-in function)

 	ImportGraph.find_downstream_modules() (built-in function)

 	
 	ImportGraph.find_modules_directly_imported_by() (built-in function)

 	ImportGraph.find_modules_that_directly_import() (built-in function)

 	ImportGraph.find_shortest_chain() (built-in function)

 	ImportGraph.find_shortest_chains() (built-in function)

 	ImportGraph.find_upstream_modules() (built-in function)

 	ImportGraph.get_import_details() (built-in function)

 	ImportGraph.is_module_squashed() (built-in function)

 	ImportGraph.remove_import() (built-in function)

 	ImportGraph.remove_module() (built-in function)

 	ImportGraph.squash_module() (built-in function)

M

 	
 	modules (ImportGraph attribute)

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 Contents

 		
 Grimp

 		
 Quick start

 		
 External packages

 		
 Multiple packages

 		
 Installation

 		
 Usage

 		
 Terminology

 		
 Building the graph

 		
 Methods for analysing the module tree

 		
 Methods for analysing direct imports

 		
 Methods for analysing import chains

 		
 Methods for manipulating the graph

 		
 Contributing

 		
 Bug reports

 		
 Documentation improvements

 		
 Feature requests and feedback

 		
 Development

 		
 Pull Request Guidelines

 		
 Tips

 		
 Authors

 		
 Changelog

 		
 0.0.1 (2018-11-05)

 		
 1.0b1 (2018-12-08)

 		
 1.0b2 (2018-12-12)

 		
 1.0b3 (2018-12-16)

 		
 1.0b4 (2019-1-7)

 		
 1.0b5 (2019-1-12)

 		
 1.0b6 (2019-1-20)

 		
 1.0b7 (2019-1-21)

 		
 1.0b8 (2019-2-1)

 		
 1.0b9 (2019-4-16)

 		
 1.0b10 (2019-5-15)

 		
 1.0b11 (2019-5-18)

 		
 1.0b12 (2019-6-12)

 		
 1.0b13 (2019-9-25)

 		
 1.0 (2019-10-17)

 		
 1.1 (2019-11-18)

_static/up-pressed.png

_static/up.png

_static/plus.png

